Parametrized Dynamics of the Weierstrass Elliptic Function
نویسندگان
چکیده
We study parametrized dynamics of the Weierstrass elliptic ℘ function by looking at the underlying lattices; that is, we study parametrized families ℘Λ and let Λ vary. Each lattice shape is represented by a point τ in a fundamental period in modular space; for a fixed lattice shape Λ = [1, τ ] we study the parametrized space kΛ. We show that within each shape space there is a wide variety of dynamical behavior, and we conduct a deeper study into certain lattice shapes such as triangular and square. We also use the invariant pair (g2, g3) to parametrize some lattices.
منابع مشابه
On the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملA Fundamental Dichotomy for Julia Sets of a Family of Elliptic Functions
We investigate topological properties of Julia sets of iterated elliptic functions of the form g = 1/℘, where ℘ is the Weierstrass elliptic function, on triangular lattices. These functions can be parametrized by C − {0}, and they all have a superattracting fixed point at zero and three other distinct critical values. We prove that the Julia set of g is either Cantor or connected, and we obtain...
متن کاملParameterized Dynamics for the Weierstrass Elliptic Function over Square Period Lattices
We iterate the Weierstrass elliptic ℘ function in order to understand the dependence of the dynamics on the underlying period lattice L. We focus on square lattices and use the holomorphic dependence on the classical invariants (g2, g3) = (g2, 0) to show that in parameter space (g2-space) one sees both quadratic-like attracting orbit behavior and pre-pole dynamics. In the case of pre-pole param...
متن کاملProof of a Folklore Julia Set Connectedness Theorem and Connections with Elliptic Functions
We prove the following theorem about Julia sets of the maps fn,p,γ(z) = z n + γ zp , for integers n, p ≥ 2, γ ∈ C by using techniques developed for the Weierstrass elliptic ℘ function and adapted to this setting. Folklore connectedness theorem: If fn,p,γ has a bounded critical orbit, then J(fn,p,γ) is connected. This is related to connectivity results by the author and others about J(℘), where ...
متن کاملWeierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system
In the paper, with the aid of symbolic computation, we investigate the generalized Hirota–Satsuma coupled KdV system via our Weierstrass semi-rational expansion method presented recently using the rational expansion of Weierstrass elliptic function and its first-order derivative. As a consequence, three families of newWeierstrass elliptic function solutions via Weierstrass elliptic function }(n...
متن کامل